
Page of 1 26 Paladin Blockchain Security

Smart Contract
Security Assessment

For AstroFarms Finance (Virgo)
14 August 2021

paladinsec.co info@paladinsec.co

Final Report

Table of Contents

Table of Contents 2

Disclaimer 4

1 Overview 5

1.1 Summary 5

1.2 Contracts Assessed 5

1.3 Findings Summary 6

1.3.1 NeptuneToken 7

1.3.2 LeoToken 7

1.3.3 CancerToken 7

1.3.4 VirgoToken 7

1.3.4 MasterChef 8

2 Findings 9

2.1 NeptuneToken 9

2.1.1 Token Overview 9

2.1.2 Privileged Roles 9

2.1.3 Issues & Recommendations 10

2.2 LeoToken 12

2.2.1 Token Overview 12

2.2.2 Privileged Roles 12

2.2.3 Issues & Recommendations 13

2.3 CancerToken 15

2.3.1 Token Overview 15

2.3.2 Privileged Roles 15

2.3.3 Issues & Recommendations 16

2.4 VirgoToken 18

2.4.1 Token Overview 18

2.4.2 Privileged Roles 18

2.4.3 Issues & Recommendations 19

Page of 2 26 Paladin Blockchain Security

2.5 MasterChef 20

2.5.1 Privileged Roles 20

2.5.2 Issues & Recommendations 21

Page of 3 26 Paladin Blockchain Security

Disclaimer
Paladin Blockchain Security (“Paladin”) has conducted an independent audit to verify the integrity of
and highlight any vulnerabilities or errors, intentional or unintentional, that may be present in the
codes that were provided for the scope of this audit. This audit report does not constitute agreement,
acceptance or advocation for the Project that was audited, and users relying on this audit report
should not consider this as having any merit for financial advice in any shape, form or nature. The
contracts audited do not account for any economic developments that may be pursued by the Project
in question, and that the veracity of the findings thus presented in this report relate solely to the
proficiency, competence, aptitude and discretion of our independent auditors, who make no
guarantees nor assurance that the contracts are completely free of exploits, bugs, vulnerabilities or
deprecation of technologies. Further, this audit report shall not be disclosed nor transmitted to any
persons or parties on any objective, goal or justification without due written assent, acquiescence or
approval by Paladin.

All information provided in this report does not constitute financial or investment advice, nor should it
be used to signal that any persons reading this report should invest their funds without sufficient
individual due diligence regardless of the findings presented in this report. Information is provided ‘as
is’, and Paladin is under no covenant to the completeness, accuracy or solidity of the contracts
audited. In no event will Paladin or its partners, employees, agents or parties related to the provision
of this audit report be liable to any parties for, or lack thereof, decisions and/or actions with regards to
the information provided in this audit report.

Cryptocurrencies and any technologies by extension directly or indirectly related to cryptocurrencies
are highly volatile and speculative by nature. All reasonable due diligence and safeguards may yet be
insufficient, and users should exercise considerable caution when participating in any shape or form in
this nascent industry.

The audit report has made all reasonable attempts to provide clear and articulate recommendations to
the Project team with respect to the rectification, amendment and/or revision of any highlighted issues,
vulnerabilities or exploits within the contracts provided. It is the sole responsibility of the Project team
to sufficiently test and perform checks, ensuring that the contracts are functioning as intended,
specifically that the functions therein contained within said contracts have the desired intended
effects, functionalities and outcomes of the Project team.

Page of 4 26 Paladin Blockchain Security

1 Overview
This report has been prepared for the Virgo layer of AstroFarms Finance. Paladin
provides a user-centred examination of the smart contracts to look for vulnerabilities,
logic errors or other issues from both an internal and external perspective.

1.1 Summary

1.2 Contracts Assessed

Project Name AstroFarms – Virgo layer

URL https://astrofarms.finance

Platform Polygon

Language Solidity

Name Contract
Live Code
Match

NeptuneToken 0x4527d831cefc76d0e5f8699f8ff4494611a6bf31

LeoToken 0xbE8DAb8Ce8521ecFDe43a8Ff8d5C6644F4dCECb7

CancerToken 0x056bdcd1d8436ae303023eade224f91825bf8e43

VirgoToken VirgoToken.sol

MasterChef VirgoMasterChefTest.sol

MATCH

MATCH

MATCH

Page of 5 26 Paladin Blockchain Security

https://astrofarms.finance

1.3 Findings Summary

Classification of Issues

Severity Found Resolved Partially Resolved
Acknowledged

(no change made)

1 1 - -

1 1 - -

6 4 - 2

6 3 - 3

Total 14 9 0 5

 Medium

 Low

 Informational

 High

Severity Description

Exploits, vulnerabilities or errors that will certainly or probabilistically lead
towards loss of funds, control, or impairment of the contract and its functions.
Issues under this classification are recommended to be fixed with utmost
urgency.

Bugs or issues with that may be subject to exploit, though their impact is
somewhat limited. Issues under this classification are recommended to be fixed
as soon as possible.

Effects are minimal in isolation and do not pose a significant danger to the
project or its users. Issues under this classification are recommended to be fixed
nonetheless.

Consistency, syntax or style best practices. Generally pose a negligible level of
risk, if any.

 Informational

 Low

 High

 Medium

Page of 6 26 Paladin Blockchain Security

1.3.1 NeptuneToken

1.3.2 LeoToken

1.3.3 CancerToken

1.3.4 VirgoToken

ID Severity Summary Status

01 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

02 Governance functionality is broken (present in all Goose forks) ACKNOWLEDGEDINFORMATIONAL

LOW RESOLVED

ID Severity Summary Status

03 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

04 Governance functionality is broken (present in all Goose forks)

LOW

ACKNOWLEDGED

ACKNOWLEDGED

INFORMATIONAL

ID Severity Summary Status

05 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

06 Governance functionality is broken (present in all Goose forks) ACKNOWLEDGEDINFORMATIONAL

LOW RESOLVED

ID Severity Summary Status

07 mint function can be used to pre-mint large amounts of tokens
before ownership is transferred to the Masterchef

LOW ACKNOWLEDGED

Page of 7 26 Paladin Blockchain Security

1.3.4 MasterChef

ID Severity Summary Status

08 Malfunctioning bonus logic design

09 No underflow protection in deposit before-after calculation

10 Setting devAddress to the zero address will break updatePool

11 updateEmissionRate has no maximum safeguard

12 Rounding vulnerability to tokens with a very large supply can cause
large supply tokens to receive zero emissions

13
virgo, forgeTokenLeo, nftIdLeo, forgeTokenCancer,
nftIdCancer, forgeTokenNeptune and nftIdNeptune can be
made immutable

14 Outdated comment above BONUS_MULTIPLIER

LOW

RESOLVED

RESOLVED

MEDIUM

RESOLVED

INFORMATIONAL

INFORMATIONAL

RESOLVED

RESOLVED

INFORMATIONAL

RESOLVEDLOW

HIGH

RESOLVED

Page of 8 26 Paladin Blockchain Security

2 Findings

2.1 NeptuneToken

2.1.1 Token Overview

2.1.2 Privileged Roles

The following functions can be called by the owner of the Masterchef:

• mint

Address 0x4527d831cefc76d0e5f8699f8ff4494611a6bf31

Token Supply Unlimited

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Transfer Fees None

Page of 9 26 MasterChef Paladin Blockchain Security

2.1.3 Issues & Recommendations

Issue #01 mint function can be used to pre-mint large amounts of tokens before
ownership is transferred to the Masterchef

Severity

Description The mint function could be used to pre-mint tokens for legitimate uses
including, but not limited to, the injection of initial liquidity, token
presale, or airdrops; however, this function may also be used to pre-
mint and dump tokens when the token contract has been deployed but
before ownership is set to the Masterchef contract.

This risk is prevalent amongst less-reputable projects, and any pre-
mints can be prominently seen on the Blockchain.

Recommendatio
n

Consider being forthright if this mint function has been used by letting
your community know how much was minted, where they are currently
stored, if a vesting contract was used for token unlocking, and finally
the purpose of the mints.

Resolution

LOW SEVERITY

The client has indicated that these tokens have been used for their
previous farms and ownership has been transferred a long time ago.

RESOLVED

Page of 10 26 NeptuneToken Paladin Blockchain Security

Issue #02 Governance functionality is broken (present in all Goose forks)

Severity

Description Although there is YAM-related delegation code in the token contract
which is usually used for governance and voting, the delegation code
can be abused as the delegates are not moved during transfers and
burns. This allows for double spending attacks on the voting
mechanism.

It should be noted that this issue is present in pretty much every single
farm out there including PancakeSwap and even SushiSwap.

Recommendation The broken delegation-related code can be removed to reduce the size
of the contract. If voting is ever desired, it can still be done through
snapshot.org, which is used by many of the larger projects.

Resolution

INFORMATIONAL

ACKNOWLEDGED

Page of 11 26 NeptuneToken Paladin Blockchain Security

2.2 LeoToken

2.2.1 Token Overview

2.2.2 Privileged Roles

The following functions can be called by the owner of the Masterchef:

• mint

Address 0xbE8DAb8Ce8521ecFDe43a8Ff8d5C6644F4dCECb7

Token Supply Unlimited

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Transfer Fees None

Page of 12 26 LeoToken Paladin Blockchain Security

2.2.3 Issues & Recommendations

Issue #03 mint function can be used to pre-mint large amounts of tokens before
ownership is transferred to the Masterchef

Severity

Description The mint function could be used to pre-mint tokens for legitimate uses
including, but not limited to, the injection of initial liquidity, token
presale, or airdrops; however, this function may also be used to pre-
mint and dump tokens when the token contract has been deployed but
before ownership is set to the Masterchef contract.

This risk is prevalent amongst less-reputable projects, and any pre-
mints can be prominently seen on the Blockchain.

Recommendation Consider being forthright if this mint function has been used by letting
your community know how much was minted, where they are currently
stored, if a vesting contract was used for token unlocking, and finally
the purpose of the mints.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 13 26 LeoToken Paladin Blockchain Security

Issue #04 Governance functionality is broken (present in all Goose forks)

Severity

Description Although there is YAM-related delegation code in the token contract
which is usually used for governance and voting, the delegation code
can be abused as the delegates are not moved during transfers and
burns. This allows for double spending attacks on the voting
mechanism.

It should be noted that this issue is present in pretty much every single
farm out there including PancakeSwap and even SushiSwap.

Recommendation The broken delegation-related code can be removed to reduce the size
of the contract. If voting is ever desired, it can still be done through
snapshot.org, which is used by many of the larger projects.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 14 26 LeoToken Paladin Blockchain Security

2.3 CancerToken

2.3.1 Token Overview

2.3.2 Privileged Roles

The following functions can be called by the owner of the Masterchef:

• mint

Address 0x056bdcd1d8436ae303023eade224f91825bf8e43

Token Supply Unlimited

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Transfer Fees None

Page of 15 26 CancerToken Paladin Blockchain Security

2.3.3 Issues & Recommendations

Issue #05 mint function can be used to pre-mint large amounts of tokens before
ownership is transferred to the Masterchef

Severity

Description The mint function could be used to pre-mint tokens for legitimate uses
including, but not limited to, the injection of initial liquidity, token
presale, or airdrops; however, this function may also be used to pre-
mint and dump tokens when the token contract has been deployed but
before ownership is set to the Masterchef contract.

This risk is prevalent amongst less-reputable projects, and any pre-
mints can be prominently seen on the Blockchain.

Recommendation Consider being forthright if this mint function has been used by letting
your community know how much was minted, where they are currently
stored, if a vesting contract was used for token unlocking, and finally
the purpose of the mints.

Resolution
The client has indicated that these tokens have been used for their
previous farms and ownership has been transferred a long time ago.

RESOLVED

LOW SEVERITY

Page of 16 26 CancerToken Paladin Blockchain Security

Issue #06 Governance functionality is broken (present in all Goose forks)

Severity

Description Although there is YAM-related delegation code in the token contract
which is usually used for governance and voting, the delegation code
can be abused as the delegates are not moved during transfers and
burns. This allows for double spending attacks on the voting
mechanism.

It should be noted that this issue is present in pretty much every single
farm out there including PancakeSwap and even SushiSwap.

Recommendation The broken delegation-related code can be removed to reduce the size
of the contract. If voting is ever desired, it can still be done through
snapshot.org, which is used by many of the larger projects.

Resolution ACKNOWLEDGED

INFORMATIONAL

Page of 17 26 CancerToken Paladin Blockchain Security

2.4 VirgoToken

2.4.1 Token Overview

2.4.2 Privileged Roles

The following functions can be called by the owner of the Masterchef:

• mint

Address Not deployed

Token Supply Unlimited

Decimal Places 18

Transfer Max Size None

Transfer Min Size None

Transfer Fees None

Page of 18 26 VirgoToken Paladin Blockchain Security

2.4.3 Issues & Recommendations

Issue #07 mint function can be used to pre-mint large amounts of tokens before
ownership is transferred to the Masterchef

Severity

Description The mint function could be used to pre-mint tokens for legitimate uses
including, but not limited to, the injection of initial liquidity, token
presale, or airdrops; however, this function may also be used to pre-
mint and dump tokens when the token contract has been deployed but
before ownership is set to the Masterchef contract.

This risk is prevalent amongst less-reputable projects, and any pre-
mints can be prominently seen on the Blockchain.

Recommendation Consider being forthright if this mint function has been used by letting
your community know how much was minted, where they are currently
stored, if a vesting contract was used for token unlocking, and finally
the purpose of the mints.

Resolution ACKNOWLEDGED

LOW SEVERITY

Page of 19 26 VirgoToken Paladin Blockchain Security

2.5 MasterChef

The Masterchef is a fork of Goose Finance’s Masterchef. A notable feature of forking
this Masterchef is the removal of the migrator function from PancakeSwap, which of
late has been used maliciously to steal users’ tokens. Furthermore, in comparison to
Goose Finance, AstroFarms has limited the deposit fee to at most 4%. We commend
AstroFarms on their decision to fork a relatively safer version of the Masterchef and
trim down the governance privileges with regards to the deposit fees. AstroFarms has
also incoporated many of our best practices before commissioning this audit report.

The main difference of AstroFarm’s Masterchef from other traditional Goose-based
Masterchefs is that if any of the three NFT tokens are held during harvesting, a reward
bonus will be awarded:

- Leo VIP: 50% harvest bonus

- Cancer VIP: 25% harvest bonus

- Neptune VIP: 25% harvest bonus

2.5.1 Privileged Roles

The following functions can be called by the owner of the contract:

• add

• set

• setDevAddress

• setFeeAddress

• updateEmissionRate

• updateStartBlock

Page of 20 26 MasterChef Paladin Blockchain Security

2.5.2 Issues & Recommendations

Issue #08 Malfunctioning bonus logic design

Severity

Location Lines 355-360, 386-391
user.rewardDebt = user
 .amount
 .mul(pool.accVirgoPerShare)
 .div(1e12)
 .mul(user.bonusMultiplier)
 .div(100);

Description Currently for the user, their bonusMultiplier is added to the
rewardDebt variable, making their rewardDebt greater if they hold an
NFT. However, the pools’ reward balance is based on the assumption
that the base rate is also scaled appropriately.

Since at the end of a deposit or withdrawal, the user.rewardDebt
should match the scaled pool.accVirgoPerShare, this extra
multiplication causes a violation of the core business logic.

Recommendation Consider removing all usage of the NFT reward mechanism first to
refactor it. Instead of trying to incorporate it in the pending and
rewardDebt variables directly, consider incorporating it in the
following manner:

Lines 333-335, line 378-380
if (pending > 0) {
 uint256 multiplier = calculateBonus(msg.sender);
 if (multiplier != 100) {
 uint256 bonus =
pending.mul(multiplier).div(100).sub(pending);
 virgo.mint(address(this), bonus);
 pending = pending.add(bonus);
 }
 safeVirgoTransfer(msg.sender, pending);
}

Note that the user.bonusMultiplier variable can be removed as well
since it does not serve any specific purpose.

Resolution
The recommended code block has been implemented.

RESOLVED

HIGH SEVERITY

Page of 21 26 MasterChef Paladin Blockchain Security

Issue #09 No underflow protection in deposit before-after calculation

Severity

Location Line 344
_amount = pool.lpToken.balanceOf(address(this)) - balanceBefore;

Description Within the deposit function, a before-after pattern is used to
calculate the deposited amount. Even though this is good idea, the
before-after calculation can underflow in the very unlikely case that
there are less tokens after then before the deposit.

Although this case is extremely unlikely, this underflow possibility
would violate one of the core principles of the Masterchef that makes
it safe to use for users (the fact that the amount calculations are trivial
and predictable) and should thus be taken out.

Recommendation Consider using SafeMath instead of raw subtraction.
Line 344
_amount =
pool.lpToken.balanceOf(address(this)).sub(balanceBefore);

Resolution
SafeMath is now used.

RESOLVED

LOW SEVERITY

Page of 22 26 MasterChef Paladin Blockchain Security

Issue #10 Setting devAddress to the zero address will break updatePool

Severity

Description Minting tokens to the zero address will revert transactions. Most
deposits and withdrawals will thus revert if the devAddr is ever set to
the zero address.

Recommendation To prevent this from ever happening by accident and to limit
governance risks, consider adding a requirement like the following :
require(_devAddress != address(0), “!nonzero”);

to the setDevAddress function.

Resolution

LOW SEVERITY

RESOLVED

Issue #11 updateEmissionRate has no maximum safeguard

Severity

Location Lines 440-444
function updateEmissionRate(uint256 _VirgoPerBlock) external
onlyOwner {
 massUpdatePools();
 VirgoPerBlock = _VirgoPerBlock;

 emit UpdateEmissionRate(msg.sender, _VirgoPerBlock);
}

Description Projects sometimes accidentally update their emission rate to a
severely high number either by accident or with malicious intent.

Recommendation Consider adding a MAX_EMISSION_RATE variable and setting it to a
reasonable value.
require(_virgoPerBlock <= MAX_EMISSION_RATE,”Too high”);

Resolution

LOW SEVERITY

The emission rate can now be updated to at most 1 token per block.

RESOLVED

Page of 23 26 MasterChef Paladin Blockchain Security

Issue #12 Rounding vulnerability to tokens with a very large supply can cause
large supply tokens to receive zero emissions

Severity

Description Within updatePool, accVirgoPerShare is based on the lpSupply
variable.
pool.accVirgoPerShare =
pool.accVirgoPerShare.add(virgoReward.mul(1e12).div(lpSupply));

However, if this lpSupply becomes a severely large value, precision
errors may occur due to rounding. This is famously seen when pools
decide to add meme-tokens which usually have huge supplies and no
decimals.

Recommendation Consider increasing precision to 1e18 across the entire contract.

Resolution

INFORMATIONAL

RESOLVED

Issue #13 virgo, forgeTokenLeo, nftIdLeo, forgeTokenCancer,
nftIdCancer, forgeTokenNeptune and nftIdNeptune can be made
immutable

Severity

Description Variables that are only set in the constructor but never modified can be
indicated as such with the immutable keyword. This is considered best
practice since it makes the code more accessible for third-party
reviewers and saves gas.

Recommendation Consider the above variables explicitly immutable.

Resolution

INFORMATIONAL

RESOLVED

Page of 24 26 MasterChef Paladin Blockchain Security

Issue #14 Outdated comment above BONUS_MULTIPLIER

Severity Informational

Location Lines 39-40
// Bonus muliplier for early virgo makers.
uint256 public constant BONUS_MULTIPLIER = 100;

Description There is a comment above BONUS_MULTIPLIER that indicates that it is
used for early Virgo makers; however, it is used for calculating the
NFT-based bonus rewards. We thus believe this comment might be
outdated.

Recommendation Consider replacing this comment with a more accurate one to ease the
process for third-party reviewers.

Resolution RESOLVED

Page of 25 26 MasterChef Paladin Blockchain Security

Page of 26 26 MasterChef Paladin Blockchain Security

	Table of Contents
	Disclaimer
	1 Overview
	1.1 Summary
	1.2 Contracts Assessed
	1.3 Findings Summary
	1.3.1 NeptuneToken
	1.3.2 LeoToken
	1.3.3 CancerToken
	1.3.4 VirgoToken
	1.3.4 MasterChef

	2 Findings
	2.1 NeptuneToken
	2.1.1 Token Overview
	2.1.2 Privileged Roles
	2.1.3 Issues & Recommendations

	2.2 LeoToken
	2.2.1 Token Overview
	2.2.2 Privileged Roles
	2.2.3 Issues & Recommendations

	2.3 CancerToken
	2.3.1 Token Overview
	2.3.2 Privileged Roles
	2.3.3 Issues & Recommendations

	2.4 VirgoToken
	2.4.1 Token Overview
	2.4.2 Privileged Roles
	2.4.3 Issues & Recommendations

	2.5 MasterChef
	2.5.1 Privileged Roles
	2.5.2 Issues & Recommendations

